初識(shí)MapReduce的應(yīng)用場(chǎng)景(附JAVA和Python代碼)
Java版本代碼
先是準(zhǔn)備一個(gè)數(shù)據(jù)集,包含著已經(jīng)切割好的詞匯,這里我們?cè)O(shè)置文件的格式是txt格式的。文件名是WordMRDemo.txt,內(nèi)容是下面簡(jiǎn)短的一句話,以空格分割開:
hello my name is spacedong welcome to the spacedong thank you
引入Hadoop的依賴包
//這里使用的是2.6.5的依賴包,你可以使用其他版本的
<dependency>
<groupId>org.a(chǎn)pache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.5</version>
</dependency>
<dependency>
<groupId>org.a(chǎn)pache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.5</version>
</dependency>
(溫馨提示:代碼部分可左右滑動(dòng))
新建WordMapper.java文件,代碼的作用是進(jìn)行以空格的形式進(jìn)行分詞。
public class WordMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Mapper.Context context)
throws java.io.IOException, InterruptedException {
String line = value.toString();
//StringTokenizer默認(rèn)按照空格來(lái)切
StringTokenizer st = new StringTokenizer(line);
while (st.hasMoreTokens()) {
String world = st.nextToken();
//map輸出
context.write(new Text(world), new IntWritable(1));
}
}
}
新建WordReduce.java文件,作用是進(jìn)行詞匯的統(tǒng)計(jì)。
public class WordReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> iterator, Context context)
throws java.io.IOException ,InterruptedException {
int sum = 0 ;
for(IntWritable i:iterator){
sum+=i.get();
}
context.write(key, new IntWritable(sum));
}
}
新建WordMRDemo.java文件,作用是運(yùn)行Job,開始分析句子。
public class WordMRDemo {
public static void main(String[] args) {
Configuration conf = new Configuration();
//設(shè)置mapper的配置,既就是hadoop/conf/mapred-site.xml的配置信息
conf.set("mapred.job.tracker", "hadoop:9000");
try {
//新建一個(gè)Job工作
Job job = new Job(conf);
//設(shè)置運(yùn)行類
job.setJarByClass(WordMRDemo.class);
//設(shè)置要執(zhí)行的mapper類
job.setMapperClass(WordMapper.class);
//設(shè)置要執(zhí)行的reduce類
job.setReducerClass(WordReduce.class);
//設(shè)置輸出key的類型
job.setMapOutputKeyClass(Text.class);
//設(shè)置輸出value的類型
job.setMapOutputValueClass(IntWritable.class);
//設(shè)置ruduce任務(wù)的個(gè)數(shù),默認(rèn)個(gè)數(shù)為一個(gè)(一般reduce的個(gè)數(shù)越多效率越高)
//job.setNumReduceTasks(2);
//mapreduce 輸入數(shù)據(jù)的文件/目錄,注意,這里可以輸入的是目錄。
FileInputFormat.a(chǎn)ddInputPath(job, new Path("F:BigDataWorkPlacedatainput"));
//mapreduce 執(zhí)行后輸出的數(shù)據(jù)目錄,不能預(yù)先存在,否則會(huì)報(bào)錯(cuò)。
FileOutputFormat.setOutputPath(job, new Path("F:BigDataWorkPlacedataout"));
//執(zhí)行完畢退出
System.exit(job.waitForCompletion(true) ? 0 : 1);
} catch (Exception e) {
e.printStackTrace();
}
}
}
最后執(zhí)行WordMRDemo.java文件,然后得到的結(jié)果是out文件夾內(nèi)的內(nèi)容,它長(zhǎng)這個(gè)樣子:
out的文件目錄
打開part-r-00000文件的內(nèi)容如下
具體的文件內(nèi)容Python代碼版本
新建map.py文件,進(jìn)行詞匯的切割。
for line in sys.stdin:
time.sleep(1000)
ss = line.strip().split(' ')
for word in ss:
print ' '.join([word.strip(), '1'])
新建red.py文件,進(jìn)行詞匯的統(tǒng)計(jì)。
cur_word = None
sum = 0
for line in sys.stdin:
ss = line.strip().split(' ')
if len(ss) 。 2:
continue
word, cnt = ss
if cur_word == None:
cur_word = word
if cur_word 。 word:
print ' '.join([cur_word, str(sum)])
cur_word = word
sum = 0
sum += int(cnt)
print ' '.join([cur_word, str(sum)])
新建run.sh文件,直接運(yùn)行即可。
HADOOP_CMD="/usr/local/src/hadoop-2.6.5/bin/hadoop"
STREAM_JAR_PATH="/usr/local/src/hadoop-2.6.5/share/hadoop/tools/lib/hadoop-streaming-2.6.5.jar"
INPUT_FILE_PATH_1="/test.txt"
OUTPUT_PATH="/output"
$HADOOP_CMD fs -rmr -skipTrash $OUTPUT_PATH
# Step 1.
$HADOOP_CMD jar $STREAM_JAR_PATH
-input $INPUT_FILE_PATH_1
-output $OUTPUT_PATH
-mapper "python map.py"
-reducer "python red.py"
-file ./map.py
-file ./red.py
以上的是演示demo的核心代碼,完整的代碼可以上github的代碼倉(cāng)庫(kù)上獲取。
GitHub地址為:http://github.com/cassieeric/bigDaaNotes
以上的文章是MapReduce系列的第一篇,下篇預(yù)告是MapReduce的編程模型,敬請(qǐng)期待!
福利
看完后,是否對(duì) MapReduce 有了初步的了解呢?最后送一本電子書給大家《Hadoop的技術(shù)內(nèi)幕:深入解析MapReduce架構(gòu)設(shè)計(jì)及實(shí)現(xiàn)原理》,在公眾號(hào)后臺(tái)回復(fù) MapReduce 關(guān)鍵字即可獲取。
參考資料:
Hadoop的技術(shù)內(nèi)幕:深入解析MapReduce架構(gòu)設(shè)計(jì)及實(shí)現(xiàn)原理
題圖:cosmin Paduraru

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
馬云重返一線督戰(zhàn),阿里重啟創(chuàng)始人模式
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
最新活動(dòng)更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
即日-11.25立即下載>>> 費(fèi)斯托白皮書《柔性:汽車生產(chǎn)未來(lái)的關(guān)鍵》
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專題
-
10 大模型的盡頭是開源
- 1 特斯拉工人被故障機(jī)器人打成重傷,索賠3.6億
- 2 【行業(yè)深度研究】退居幕后四年后,張一鳴終于把算法公司變成AI公司?
- 3 人形機(jī)器人廠商,正在批量復(fù)刻宇樹G1
- 4 AI 時(shí)代,阿里云想當(dāng)“安卓” ,那誰(shuí)是“蘋果”?
- 5 華為公布昇騰芯片三年計(jì)劃,自研HBM曝光
- 6 硬剛英偉達(dá)!華為發(fā)布全球最強(qiáng)算力超節(jié)點(diǎn)和集群
- 7 機(jī)器人9月大事件|3家國(guó)產(chǎn)機(jī)器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 8 谷歌“香蕉”爆火啟示:國(guó)產(chǎn)垂類AI的危機(jī)還是轉(zhuǎn)機(jī)?
- 9 00后華裔女生靠?jī)刹緼I電影狂賺7.8億人民幣,AI正式進(jìn)軍好萊塢
- 10 美光:AI Capex瘋投不止,終于要拉起存儲(chǔ)超級(jí)周期了?