基于Spark的數(shù)據(jù)分析實(shí)踐
SparkSQL Flow 支持的Sourse
支持從 Hive 獲得數(shù)據(jù);
支持文件:JSON,TextFile(CSV),ParquetFile,AvroFile
支持RDBMS數(shù)據(jù)庫(kù):PostgreSQL, MySQL,Oracle
支持 NOSQL 數(shù)據(jù)庫(kù):Hbase,MongoDB
SparkSQL Flow TextFile Source
textfile 為讀取文本文件,把文本文件每行按照 delimiter 指定的字符進(jìn)行切分,切分不夠的列使用 null 填充。
<source type="textfile" table_name="et_rel_pty_cong" fields="cust_id,name1,gender1,age1:int" delimiter="," path="file:///Users/zhenqin/software/hive/user.txt"/>
可左右滑動(dòng)查看代碼
Tablename 為該文件映射的數(shù)據(jù)表名,可理解為數(shù)據(jù)的視圖;
Fields 為切分后的字段,使用逗號(hào)分隔,字段后可緊跟該字段的類型,使用冒號(hào)分隔;
Delimiter 為每行的分隔符;
Path 用于指定文件地址,可以是文件,也可是文件夾;
Path 指定地址需要使用協(xié)議,如:file:// 、 hdfs://,否則跟 core-site.xml 配置密切相關(guān);
SparkSQL Flow DB Source
<source type="mysql" table_name="et_rel_pty_cong" table="user" url="jdbc:mysql://localhost:3306/tdb?characterEncoding=UTF-8" driver="com.mysql.jdbc.Driver" user="root" password="123456"/>
可左右滑動(dòng)查看代碼
RDBMS 是從數(shù)據(jù)庫(kù)使用 JDBC讀取 數(shù)據(jù)集。支持 type 為:db、mysql、oracle、postgres、mssql;
tablename 為該數(shù)據(jù)表的抽象 table 名稱(視圖);
url、driver、user,password 為數(shù)據(jù)庫(kù) JDBC 驅(qū)動(dòng)信息,為必須字段;
SparkSQL 會(huì)加載該表的全表數(shù)據(jù),無(wú)法使用 where 條件。
SparkSQL Flow Transformer
<transform type="sql" table_name="cust_id_agmt_id_t" cached="true"> SELECT c_phone,c_type,c_num, CONCAT_VAL(cust_id) as cust_ids FROM user_concat_testx group by c_phone,c_type,c_num</transform>
可左右滑動(dòng)查看代碼
Transform 支持 cached 屬性,默認(rèn)為 false;如果設(shè)置為 true,相當(dāng)于把該結(jié)果緩存到內(nèi)存中,緩存到內(nèi)存中的數(shù)據(jù)在后續(xù)其它 Transform 中使用能提高計(jì)算效率。但是需使用大量?jī)?nèi)存,開(kāi)發(fā)者需要評(píng)估該數(shù)據(jù)集能否放到內(nèi)存中,防止出現(xiàn) OutofMemory 的異常。
SparkSQL Flow Targets
SparkSQL Flow Targets 支持輸出數(shù)據(jù)到一個(gè)或者多個(gè)目標(biāo)。這些目標(biāo),基本覆蓋了 Source 包含的外部系統(tǒng)。下面以 Hive 舉例說(shuō)明:
<target type="hive" table_name="cust_id_agmt_id_t" savemode=”append”target_table_name="cust_id_agmt_id_h(yuǎn)"/>
可左右滑動(dòng)查看代碼
table_name 為 source 或者 Transform 定義的表名稱;
target_table_name 為 hive 中的表結(jié)果,Hive 表可不存在也可存在,sparksql 會(huì)根據(jù) DataFrame 的數(shù)據(jù)類型自動(dòng)創(chuàng)建表;
savemode 默認(rèn)為 overwrite 覆蓋寫入,當(dāng)寫入目標(biāo)已存在時(shí)刪除源表再寫入;支持 append 模式, 可增量寫入。
Target 有一個(gè)特殊的 show 類型的 target。用于直接在控制臺(tái)輸出一個(gè) DataFrame 的結(jié)果到控制臺(tái)(print),該 target 用于開(kāi)發(fā)和測(cè)試。
<target type="show" table_name="cust_id_agmt_id_t" rows=”10000”/>
可左右滑動(dòng)查看代碼
Rows 用于控制輸出多少行數(shù)據(jù)。
SparkSQL Around
After 用于 Flow 在運(yùn)行結(jié)束后執(zhí)行的一個(gè)環(huán)繞,用于記錄日志和寫入狀態(tài)。類似 Java 的 try {} finally{ round.execute() }
多個(gè) round 一定會(huì)執(zhí)行,round 異常不會(huì)導(dǎo)致任務(wù)失敗。
<prepare> <round type="mysql" sql="insert into cpic_task_h(yuǎn)istory(id, task_type, catalog_model, start_time, retry_count, final_status, created_at) values(${uuid}, ${task.type}, ${catalog.model}, ${starttime}, 0, ${status}, now())" url="${jdbc.url}" .../></prepare><after> <round type="mysql" sql="update cpic_task_h(yuǎn)istory set end_time = ${endtime}, final_status = ${status}, error_text = ${error} where id = ${uuid}" url="${jdbc.url}”…/></after>
可左右滑動(dòng)查看代碼
Prepare round 和 after round 配合使用可用于記錄 SparkSQL Flow 任務(wù)的運(yùn)行日志。
SparkSQL Around可使用的變量
SparkSQL Around的執(zhí)行效果
Prepare round 可做插入(insert)動(dòng)作,after round 可做更新 (update)動(dòng)作,相當(dāng)于在數(shù)據(jù)庫(kù)表中從執(zhí)行開(kāi)始到結(jié)束有了完整的日志記錄。SparkSQL Flow 會(huì)保證round 一定能被執(zhí)行,而且 round 的執(zhí)行不影響任務(wù)的狀態(tài)。
SparkSQL Flow 提交
bin/spark-submit --master yarn-client --driver-memory 1G --num-executors 10 --executor-memory 2G --jars /lib/jsoup-1.11.3.jarlib/jsqlparser-0.9.6.jar,/lib/mysql-connector-java-5.1.46.jar --conf spark.yarn.jars=hdfs:///lib/spark2/*.jar --queue default --name FlowTest etl-flow-0.2.0.jar -f hive-flow-test.xml
可左右滑動(dòng)查看代碼
接收必須的參數(shù) –f,可選的參數(shù)為支持 Kerberos 認(rèn)證的租戶名稱principal,和其認(rèn)證需要的密鑰文件。
usage: spark-submit --jars etl-flow.jar --class com.yiidata.etl.flow.source.FlowRunner -f,--xml-file <arg> Flow XML File Path --keytabFile <arg> keytab File Path(Huawei) --krb5File <arg> krb5 File Path(Huawei) --principal <arg> principal for hadoop(Huawei)
可左右滑動(dòng)查看代碼
SparkSQL Execution Plan
每個(gè)Spark Flow 任務(wù)本質(zhì)上是一連串的 SparkSQL 操作,在 SparkUI SQL tab 里可以看到 flow 中重要的數(shù)據(jù)表操作。
regiserDataFrameAsTable 是每個(gè) source 和 Transform 的數(shù)據(jù)在 SparkSQL 中的數(shù)據(jù)視圖,每個(gè)視圖都會(huì)在 SparkContex 中注冊(cè)一次。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
馬云重返一線督戰(zhàn),阿里重啟創(chuàng)始人模式
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
最新活動(dòng)更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
即日-11.25立即下載>>> 費(fèi)斯托白皮書《柔性:汽車生產(chǎn)未來(lái)的關(guān)鍵》
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專題
-
9 每日AI全球觀察
- 1 特斯拉工人被故障機(jī)器人打成重傷,索賠3.6億
- 2 【行業(yè)深度研究】退居幕后四年后,張一鳴終于把算法公司變成AI公司?
- 3 AI 時(shí)代,阿里云想當(dāng)“安卓” ,那誰(shuí)是“蘋果”?
- 4 拐點(diǎn)已至!匯川領(lǐng)跑工控、埃斯頓份額第一、新時(shí)達(dá)海爾賦能扭虧為盈
- 5 硬剛英偉達(dá)!華為發(fā)布全球最強(qiáng)算力超節(jié)點(diǎn)和集群
- 6 隱退4年后,張一鳴久違現(xiàn)身!互聯(lián)網(wǎng)大佬正集體殺回
- 7 00后華裔女生靠?jī)刹緼I電影狂賺7.8億人民幣,AI正式進(jìn)軍好萊塢
- 8 谷歌“香蕉”爆火啟示:國(guó)產(chǎn)垂類AI的危機(jī)還是轉(zhuǎn)機(jī)?
- 9 機(jī)器人9月大事件|3家國(guó)產(chǎn)機(jī)器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 10 美光:AI Capex瘋投不止,終于要拉起存儲(chǔ)超級(jí)周期了?
- 生產(chǎn)部總監(jiān) 廣東省/廣州市
- 資深管理人員 廣東省/江門市
- Regional Sales Manager 廣東省/深圳市
- 銷售總監(jiān) 廣東省/深圳市
- 結(jié)構(gòu)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 技術(shù)專家 廣東省/江門市
- 激光器高級(jí)銷售經(jīng)理 上海市/虹口區(qū)
- 封裝工程師 北京市/海淀區(qū)