使用數(shù)據(jù)增強從頭開始訓練卷積神經(jīng)網(wǎng)絡(luò)(CNN)
介紹
該文致力于處理神經(jīng)網(wǎng)絡(luò)中的過度擬合。
過度擬合將是你主要擔心的問題,因為你僅使用 2000 個數(shù)據(jù)樣本訓練模型。存在一些有助于克服過度擬合的方法,即 dropout 和權(quán)重衰減(L2 正則化)。
我們將討論數(shù)據(jù)增強,這是計算機視覺獨有的,在使用深度學習模型解釋圖像時,數(shù)據(jù)增強在任何地方都會用到。
數(shù)據(jù)增強
學習示例不足會阻止你訓練可以泛化到新數(shù)據(jù)的模型,從而導致過度擬合。如果你有無限的數(shù)據(jù),你的模型將暴露于當前數(shù)據(jù)分布的所有特征,從而防止過度擬合。
通過增加具有不同隨機變化的樣本來產(chǎn)生逼真的圖像,數(shù)據(jù)增強使用現(xiàn)有的訓練樣本來生成更多的訓練數(shù)據(jù)。
你的模型不應在訓練期間兩次查看同一圖像。這使模型更加通用并暴露了數(shù)據(jù)的其他特征。
Keras 可以通過使用ImageDataGenerator函數(shù)定義要應用于圖像的各種隨機變換來實現(xiàn)這一點。
讓我們從一個插圖開始。
####-----data augmentation configuration via ImageDataGenerator-------####
datagen = ImageDataGenerator(
rotation=40,
width_shift=0.2,
height_shift=0.2,
shear=0.2,
zoom=0.2,
horizontal_flip=True,
fill_mode='nearest')
讓我們快速回顧一下這段代碼:
· rotation:這是圖像隨機旋轉(zhuǎn)的范圍。它的容量在(0-180)度之間。
· width_shift 和 height_shift:范圍(作為總寬度或高度的一部分),在其中垂直或水平隨機翻轉(zhuǎn)圖片。
· shear:用于隨機應用剪切變換。
· zoom:用于隨機縮放圖像。
· Horizontal_flip :用于隨機水平翻轉(zhuǎn)一半圖像
· fill_mode:是用于填充新生成的像素的方法,這些像素可能在旋轉(zhuǎn)或?qū)挾龋叨茸兓蟪霈F(xiàn)。
顯示增強圖像
####-----Let's display some randomly augmented training images-------####
from keras.preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.a(chǎn)rray_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
圖:使用數(shù)據(jù)增強生成貓圖片
如果你使用數(shù)據(jù)增強設(shè)置訓練新網(wǎng)絡(luò),網(wǎng)絡(luò)將永遠不會收到兩次相同的輸入。
然而,因為它只接收來自少量原始照片的輸入,這些輸入仍然是高度相關(guān)的;你只能重新混合已經(jīng)存在的信息。
因此,這可能不足以消除過度擬合。在密集鏈接分類器之前,你應該在算法中包含一個 Dropout 層,以進一步對抗過度擬合。
實時數(shù)據(jù)增強應用
1. 醫(yī)療保健
管理數(shù)據(jù)集不是醫(yī)學成像應用的解決方案,因為獲取大量經(jīng)過專業(yè)標記的樣本需要很長時間和金錢。
通過增強設(shè)計的網(wǎng)絡(luò)必須比類似 X 射線圖片中的預測變化更可靠和真實。但是,我們可以通過使用數(shù)據(jù)增強來增加后續(xù)插圖中的數(shù)據(jù)數(shù)量。
圖:X 射線圖像中的數(shù)據(jù)增強
2. 自動駕駛汽車
自動駕駛汽車是一個不同的使用主題,其中數(shù)據(jù)增強是有益的。
例如,CARLA旨在在物理模擬中產(chǎn)生靈活性和真實感。CARLA 旨在促進自動駕駛系統(tǒng)的結(jié)果、指導和驗證。它基于虛幻引擎 4,并提供了一個完整的模擬器環(huán)境,用于在安全的環(huán)境中測試自動駕駛技術(shù)。
當數(shù)據(jù)稀缺成為問題時,使用強化學習技術(shù)創(chuàng)建的模擬環(huán)境可以幫助人工智能系統(tǒng)的訓練和測試。對模擬環(huán)境進行建模以創(chuàng)建真實場景的能力為數(shù)據(jù)增強開辟了一個充滿可能性的世界。
從頭開始定義 CNN 模型
####------Defining CNN, including dropout--------####
model = models.Sequential()
model.a(chǎn)dd(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.a(chǎn)dd(layers.MaxPooling2D((2, 2)))
model.a(chǎn)dd(layers.Conv2D(64, (3, 3), activation='relu'))
model.a(chǎn)dd(layers.MaxPooling2D((2, 2)))
model.a(chǎn)dd(layers.Conv2D(128, (3, 3), activation='relu'))
model.a(chǎn)dd(layers.MaxPooling2D((2, 2)))
model.a(chǎn)dd(layers.Conv2D(128, (3, 3), activation='relu'))
model.a(chǎn)dd(layers.MaxPooling2D((2, 2)))
model.a(chǎn)dd(layers.Flatten())
model.a(chǎn)dd(layers.Dropout(0.5))
model.a(chǎn)dd(layers.Dense(512, activation='relu'))
model.a(chǎn)dd(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
讓我們使用數(shù)據(jù)增強和損失函數(shù)來訓練網(wǎng)絡(luò)。
####-------Train CNN using data-augmentation--------#####
train_datagen = ImageDataGenerator(rescale=1./255, rotation=40, width_shift=0.2, height_shift=0.2, shear=0.2, zoom=0.2, horizontal_flip=True,)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=32, class_mode='binary')
validation_generator = test_datagen.flow_from_directory(validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary')
history = model.fit_generator(train_generator, steps_per_epoch=100, epochs=100, validation_data=validation_generator, validation_steps=50)
####-------Save the model--------#####
model.save('cats_and_dogs_small_2.h5')
由于數(shù)據(jù)增強和丟失,模型不再過度擬合。因為訓練曲線和驗證曲線彼此接近。有了這個準確度,你就超過了非正則化模型 15%,達到了 82%。讓我們繪制曲線。
在訓練期間顯示損失曲線和準確度
通過使用其他正則化方法和微調(diào)網(wǎng)絡(luò)參數(shù)(例如每個卷積層的過濾器數(shù)量或網(wǎng)絡(luò)中的層數(shù)),你可以實現(xiàn)更高的準確度,高達 86% 或 87%。
但是,由于你要處理的數(shù)據(jù)很少,因此僅通過從頭開始訓練自己的 CNN 來達到更高的水平將是一項挑戰(zhàn)。
你必須采用預訓練模型作為進一步的步驟,以提高你在此挑戰(zhàn)中的準確性。
結(jié)論
1. 訓練數(shù)據(jù)的質(zhì)量、數(shù)量和上下文本質(zhì)會顯著影響深度學習模型的準確性。但開發(fā)深度學習模型的最大問題之一是缺乏數(shù)據(jù)。
2. 在生產(chǎn)使用方法中獲取此類數(shù)據(jù)可能既昂貴又耗時。公司使用數(shù)據(jù)增強這一低成本且高效的技術(shù)來更快地開發(fā)高精度 AI 模型,并減少對收集和準備訓練實例的依賴。
3. 本文解釋了我們?nèi)绾问褂脭?shù)據(jù)增強技術(shù)來訓練我們的模型。當收集大量數(shù)據(jù)具有挑戰(zhàn)性時,會使用數(shù)據(jù)增強。正如博客中所討論的,醫(yī)療保健和無人駕駛汽車是使用這種方法的兩個最著名的領(lǐng)域。
原文標題 : 使用數(shù)據(jù)增強從頭開始訓練卷積神經(jīng)網(wǎng)絡(luò)(CNN)

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
-
9 每日AI全球觀察
- 1 特斯拉工人被故障機器人打成重傷,索賠3.6億
- 2 【行業(yè)深度研究】退居幕后四年后,張一鳴終于把算法公司變成AI公司?
- 3 AI 時代,阿里云想當“安卓” ,那誰是“蘋果”?
- 4 拐點已至!匯川領(lǐng)跑工控、埃斯頓份額第一、新時達海爾賦能扭虧為盈
- 5 硬剛英偉達!華為發(fā)布全球最強算力超節(jié)點和集群
- 6 隱退4年后,張一鳴久違現(xiàn)身!互聯(lián)網(wǎng)大佬正集體殺回
- 7 00后華裔女生靠兩部AI電影狂賺7.8億人民幣,AI正式進軍好萊塢
- 8 谷歌“香蕉”爆火啟示:國產(chǎn)垂類AI的危機還是轉(zhuǎn)機?
- 9 機器人9月大事件|3家國產(chǎn)機器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 10 美光:AI Capex瘋投不止,終于要拉起存儲超級周期了?
- 生產(chǎn)部總監(jiān) 廣東省/廣州市
- 資深管理人員 廣東省/江門市
- Regional Sales Manager 廣東省/深圳市
- 銷售總監(jiān) 廣東省/深圳市
- 結(jié)構(gòu)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 自動化高級工程師 廣東省/深圳市
- 技術(shù)專家 廣東省/江門市
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 封裝工程師 北京市/海淀區(qū)