人工智能之人工神經(jīng)網(wǎng)絡(luò)(ANN)
通過(guò)上一篇文章《人工智能之深度學(xué)習(xí)》,我們清楚地知道深度學(xué)習(xí)(DL)的概念源于人工神經(jīng)網(wǎng)絡(luò)ANN(Artificial Neural Network)。人工神經(jīng)網(wǎng)絡(luò)ANN是20世紀(jì)80 年代以來(lái)人工智能領(lǐng)域興起的研究熱點(diǎn)。人工神經(jīng)網(wǎng)絡(luò)ANN簡(jiǎn)稱為神經(jīng)網(wǎng)絡(luò)或類神經(jīng)網(wǎng)絡(luò)。深度學(xué)習(xí)實(shí)際上是深度神經(jīng)網(wǎng)絡(luò)DNN,即深度學(xué)習(xí)從人工神經(jīng)網(wǎng)絡(luò)ANN模型發(fā)展起來(lái)的,因此有必要對(duì)人工神經(jīng)網(wǎng)絡(luò)ANN作進(jìn)一步探討。^_^
最近十幾年來(lái),人工神經(jīng)網(wǎng)絡(luò)ANN的研究工作不斷深入,已經(jīng)取得了很大進(jìn)展,其在模式識(shí)別、智能機(jī)器人、自動(dòng)控制、預(yù)測(cè)估計(jì)、生物、醫(yī)學(xué)、經(jīng)濟(jì)等領(lǐng)域已成功地解決了許多現(xiàn)代計(jì)算機(jī)難以解決的實(shí)際問(wèn)題,表現(xiàn)出了良好的智能特性。
那么究竟什么是人工神經(jīng)網(wǎng)絡(luò)ANN呢?
人工神經(jīng)網(wǎng)絡(luò)ANN從信息處理角度對(duì)人腦神經(jīng)元網(wǎng)絡(luò)進(jìn)行抽象,建立某種簡(jiǎn)單模型,按不同的連接方式組成不同的網(wǎng)絡(luò)。人工神經(jīng)網(wǎng)絡(luò)ANN是一種運(yùn)算模型,由大量的節(jié)點(diǎn)(或稱神經(jīng)元)之間相互聯(lián)接構(gòu)成。每個(gè)節(jié)點(diǎn)(神經(jīng)元)代表一種特定的輸出函數(shù),稱為激勵(lì)函數(shù)(activation function)。每?jī)蓚(gè)節(jié)點(diǎn)間的連接都代表一個(gè)對(duì)于通過(guò)該連接信號(hào)的加權(quán)值,稱之為權(quán)重,這相當(dāng)于人工神經(jīng)網(wǎng)絡(luò)的記憶。網(wǎng)絡(luò)的輸出則依網(wǎng)絡(luò)的連接方式,權(quán)重值和激勵(lì)函數(shù)的不同而不同。而網(wǎng)絡(luò)自身通常都是對(duì)自然界某種算法或者函數(shù)的逼近,也可能是對(duì)一種邏輯策略的表達(dá)。
人工神經(jīng)網(wǎng)絡(luò)ANN的發(fā)展歷程:
1) 人工神經(jīng)網(wǎng)絡(luò)ANN的概念由W.S.McCulloch和W.Pitts等人于1943年提出。他們通過(guò)MP模型提出了神經(jīng)元的形式化數(shù)學(xué)描述和網(wǎng)絡(luò)結(jié)構(gòu)方法。
2) 1960s年,人工神經(jīng)網(wǎng)絡(luò)得到了進(jìn)一步發(fā)展,更完善的神經(jīng)網(wǎng)絡(luò)模型被提出,其中包括感知器和自適應(yīng)線性元件等。1982年, J.J.Hopfield提出了Hopfield神經(jīng)網(wǎng)格模型,引入“計(jì)算能量”概念,給出了網(wǎng)絡(luò)穩(wěn)定性判斷。 1984年,他又提出了連續(xù)時(shí)間Hopfield神經(jīng)網(wǎng)絡(luò)模型,開(kāi)創(chuàng)了神經(jīng)網(wǎng)絡(luò)用于聯(lián)想記憶和優(yōu)化計(jì)算的新途徑。這項(xiàng)開(kāi)拓性的研究工作有力地推動(dòng)了神經(jīng)網(wǎng)絡(luò)的研究。
3) 1985年,有學(xué)者提出了波耳茲曼模型,在學(xué)習(xí)中采用統(tǒng)計(jì)熱力學(xué)模擬退火技術(shù),保證整個(gè)系統(tǒng)趨于全局穩(wěn)定點(diǎn)。
4) 1986年進(jìn)行認(rèn)知微觀結(jié)構(gòu)地研究,提出了并行分布處理的理論。
5) 1986年,Rumelhart, Hinton, Williams發(fā)展了BP算法。迄今,BP算法已被用于解決大量實(shí)際問(wèn)題。
6) 1988年,Linsker對(duì)感知機(jī)網(wǎng)絡(luò)提出了新的自組織理論,并在Shanon信息論的基礎(chǔ)上形成了最大互信息理論,從而點(diǎn)燃了基于NN的信息應(yīng)用理論的光芒。
7) 1988年,Broomhead和Lowe用徑向基函數(shù)(Radial basis function, RBF)提出分層網(wǎng)絡(luò)的設(shè)計(jì)方法,從而將NN的設(shè)計(jì)與數(shù)值分析和線性適應(yīng)濾波相掛鉤。
8) 90年代初,Vapnik等提出了支持向量機(jī)(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)維數(shù)的概念。
9) 美國(guó)國(guó)會(huì)通過(guò)決議將1990年1月5日開(kāi)始的十年定為“腦的十年”,國(guó)際研究組織號(hào)召它的成員國(guó)將“腦的十年”變?yōu)槿蛐袨椤T谌毡镜摹罢鎸?shí)世界計(jì)算(RWC)”項(xiàng)目中,人工智能的研究成了一個(gè)重要的組成部分。人工神經(jīng)網(wǎng)絡(luò)的研究從此受到了各個(gè)發(fā)達(dá)國(guó)家的重視。
人工神經(jīng)網(wǎng)絡(luò)特征:
人工神經(jīng)網(wǎng)絡(luò)是由大量處理單元互聯(lián)組成的非線性、自適應(yīng)信息處理系統(tǒng)。它是在現(xiàn)代神經(jīng)科學(xué)研究成果的基礎(chǔ)上提出的,試圖通過(guò)模擬大腦神經(jīng)網(wǎng)絡(luò)處理、記憶信息的方式進(jìn)行信息處理。人工神經(jīng)網(wǎng)絡(luò)具有四個(gè)基本特征:
(1)非線性:人工神經(jīng)元處于激活或抑制二種不同的狀態(tài),這種行為在數(shù)學(xué)上表現(xiàn)為一種非線性關(guān)系。具有閾值的神經(jīng)元構(gòu)成的網(wǎng)絡(luò)具有更好的性能,可以提高容錯(cuò)性和存儲(chǔ)容量。
(2)非局限性:一個(gè)神經(jīng)網(wǎng)絡(luò)通常由多個(gè)神經(jīng)元廣泛連接而成。一個(gè)系統(tǒng)的整體行為不僅取決于單個(gè)神經(jīng)元的特征,而且可能主要由單元之間的相互作用、相互連接所決定。通過(guò)單元之間的大量連接模擬大腦的非局限性。
(3)非常定性:人工神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)、自組織、自學(xué)習(xí)能力。神經(jīng)網(wǎng)絡(luò)不但處理的信息可以有各種變化,而且在處理信息的同時(shí),非線性動(dòng)力系統(tǒng)本身也在不斷變化。采用迭代過(guò)程描寫(xiě)動(dòng)力系統(tǒng)的演化過(guò)程。
(4)非凸性:一個(gè)系統(tǒng)的演化方向,在一定條件下將取決于某個(gè)特定的狀態(tài)函數(shù)。非凸性是指這種函數(shù)有多個(gè)極值,故系統(tǒng)具有多個(gè)較穩(wěn)定的平衡態(tài),這將導(dǎo)致系統(tǒng)演化的多樣性。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車研發(fā)中心重磅落地,寶馬家門(mén)口“搶人”
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專題
- 1 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 2 人形機(jī)器人,正狂奔在批量交付的曠野
- 3 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 6 2025年8月人工智能投融資觀察
- 7 騰訊 Q2 財(cái)報(bào)亮眼:AI 已成第二增長(zhǎng)曲線
- 8 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 9 10 Manus跑路,大廠掉線,只能靠DeepSeek了