python+keras:識(shí)別狗的品種,準(zhǔn)確率超過(guò)80%!
在這篇文章中,將教大家實(shí)現(xiàn)一個(gè)網(wǎng)頁(yè)應(yīng)用程序,該程序可以接收狗的圖片,然后輸出其品種,其準(zhǔn)確率超過(guò)80%!
我們將使用深度學(xué)習(xí)來(lái)訓(xùn)練一個(gè)識(shí)別狗品種的模型,數(shù)據(jù)集是狗圖像與他們的品種信息,通過(guò)學(xué)習(xí)圖像的特征來(lái)區(qū)分狗的品種。數(shù)據(jù)分析數(shù)據(jù)集可以從這里下載(https://s3-us-west-1.a(chǎn)mazonaws.com/udacity-aind/dog-project/dogImages.zip)。以下是關(guān)于數(shù)據(jù)的一些介紹:犬種總數(shù):133狗圖片總數(shù):8351(訓(xùn)練集:6680,驗(yàn)證集:835,測(cè)試集:836)最受歡迎的品種:阿拉斯加對(duì)應(yīng)96個(gè)樣本,博德牧羊犬對(duì)應(yīng)93個(gè)樣本按圖片數(shù)量排序的前30個(gè)品種如下:
我們還可以在這里看到一些狗的圖片和它們的品種:
數(shù)據(jù)預(yù)處理我們會(huì)把每個(gè)圖像作為一個(gè)numpy數(shù)組進(jìn)行加載,并將它們的大小調(diào)整為224x224,這是大多數(shù)傳統(tǒng)神經(jīng)網(wǎng)絡(luò)接受圖像的默認(rèn)大小,另外我們?yōu)閳D像的數(shù)量添加為另一個(gè)維度。from keras.preprocessing import image from tqdm import tqdm
def path_to_tensor(img_path): '''將給定路徑下的圖像轉(zhuǎn)換為張量''' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) return np.expand_dims(x, axis=0)
def paths_to_tensor(img_paths): '''將給定路徑中的所有圖像轉(zhuǎn)換為張量''' list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)] return np.vstack(list_of_tensors)最后,我們使用ImageDataGenerator對(duì)圖像進(jìn)行動(dòng)態(tài)縮放和增強(qiáng)train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, horizontal_flip=True, vertical_flip=True, rotation_range=20)
valid_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255.)
train_generator = train_datagen.flow(train_tensors, train_targets, batch_size=32)valid_generator = train_datagen.flow(valid_tensors, valid_targets, batch_size=32)test_generator = train_datagen.flow(test_tensors, test_targets, batch_size=32)CNN我們將在預(yù)處理數(shù)據(jù)集上從頭開始訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)(CNN),如下所示:model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(224, 224, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(32, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(256, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(2048, activation='softmax'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1024, activation='softmax'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(133, activation='softmax')])
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath='../saved_models/weights_best_custom.hdf5', verbose=1, save_best_only=True)

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車研發(fā)中心重磅落地,寶馬家門口“搶人”
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日立即報(bào)名>> Works With 開發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【限時(shí)下載】ADI中國(guó)三十周年感恩回饋助力企業(yè)升級(jí)!
推薦專題
- 1 阿里首位程序員,“掃地僧”多隆已離職
- 2 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 3 宇樹機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 清華跑出具身智能獨(dú)角獸:給機(jī)器人安上眼睛和大腦,融資近20億
- 5 踢館大廠和微軟,剖析WPS靈犀的AI實(shí)用主義
- 6 特朗普要求英特爾首位華人 CEO 辭職
- 7 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 8 騰訊 Q2 財(cái)報(bào)亮眼:AI 已成第二增長(zhǎng)曲線
- 9 谷歌吹響AI沖鋒號(hào),AI還有哪些機(jī)會(huì)
- 10 騰訊米哈游押寶的中國(guó)AI應(yīng)用,正在海外悶聲發(fā)財(cái)