python+keras:識(shí)別狗的品種,準(zhǔn)確率超過(guò)80%!
model.fit(train_generator, epochs=5, validation_data=valid_generator, callbacks=[checkpointer])我們使用一個(gè)ModelCheckpoint的回調(diào)來(lái)保存驗(yàn)證分?jǐn)?shù)較高的模型。通過(guò)測(cè)試模型,我們得到的準(zhǔn)確率只有1%左右使用遷移學(xué)習(xí)現(xiàn)在,我們使用遷移學(xué)習(xí)來(lái)實(shí)現(xiàn)更高的準(zhǔn)確率。首先我們下載ResNet-50,可以通過(guò)運(yùn)行下面的代碼來(lái)提取相應(yīng)的訓(xùn)練集、測(cè)試和驗(yàn)證集:bottleneck_features = np.load('Data/bottleneck_features/DogResnet50Data.npz')train_Resnet50 = bottleneck_features['train']valid_Resnet50 = bottleneck_features['valid']test_Resnet50 = bottleneck_features['test']我們現(xiàn)在再次定義模型,并對(duì)提取的特征使用GlobalAveragePooling2D,它將一組特征平均為一個(gè)值。最后,如果驗(yàn)證損失在兩個(gè)連續(xù)的epoch內(nèi)沒(méi)有增加,我們使用額外的回調(diào)來(lái)降低學(xué)習(xí)率;如果驗(yàn)證損失在連續(xù)的5個(gè)epoch內(nèi)沒(méi)有增加,可以提前停止訓(xùn)練。Resnet50_model = tf.keras.models.Sequential()Resnet50_model.a(chǎn)dd(tf.keras.layers.GlobalAveragePooling2D(input_shape=train_Resnet50.shape[1:]))Resnet50_model.a(chǎn)dd(tf.keras.layers.Dense(1024, activation='relu'))Resnet50_model.a(chǎn)dd(tf.keras.layers.Dense(133, activation='softmax'))
Resnet50_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath='saved_models/weights_best_Resnet50.hdf5', verbose=1, save_best_only=True)early_stopping = tf.keras.callbacks.EarlyStopping(patience=5, monitor='val_loss')
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(patience=2, monitor='val_loss')Resnet50_model.fit(train_Resnet50, train_targets, validation_data=(valid_Resnet50, valid_targets), epochs=50, batch_size=20, callbacks=[checkpointer, early_stopping, reduce_lr], verbose=1)### 訓(xùn)練模型最后在測(cè)試集上的準(zhǔn)確率為82.65%,這與我們白手起家訓(xùn)練的模型相比,是一個(gè)巨大的進(jìn)步。構(gòu)建web應(yīng)用程序?qū)τ趙eb應(yīng)用程序,我們首先編寫(xiě)了一個(gè)helper函數(shù),該函數(shù)接受圖像路徑并返回品種。label_to_cat字典將每個(gè)數(shù)字標(biāo)簽映射到它的狗品種。def predict_breed(img_path): '''預(yù)測(cè)給定圖像的品種''' # 提取特征 bottleneck_feature = extract_Resnet50(path_to_tensor(img_path)) bottleneck_feature = tf.keras.models.Sequential([ tf.keras.layers.GlobalAveragePooling2D(input_shape=bottleneck_feature.shape[1:]) ]).predict(bottleneck_feature).reshape(1, 1, 1, 2048) # 獲得預(yù)測(cè)向量 predicted_vector = Resnet50_model.predict(bottleneck_feature) # 模型預(yù)測(cè)的犬種 return label_to_cat[np.a(chǎn)rgmax(predicted_vector)]對(duì)于web應(yīng)用程序,我們將使用flaskweb框架來(lái)幫助我們用最少的代碼創(chuàng)建web應(yīng)用程序。我們定義一個(gè)接受圖像的路由,并用狗的品種呈現(xiàn)一個(gè)輸出模板@app.route('/upload', methods=['POST','GET'])def upload_file(): if request.method == 'GET': return render_template('index.html') else: file = request.files['image'] full_name = os.path.join(UPLOAD_FOLDER, file.filename) file.save(full_name) dog_breed = dog_breed_classifier(full_name) return render_template('predict.html', image_file_name = file.filename, label = dog_breed)predict.html是分別顯示圖像及其犬種的模板。結(jié)論祝賀你!你已經(jīng)成功地實(shí)現(xiàn)了一個(gè)狗品種分類(lèi)器,并且可以準(zhǔn)確地分辨出狗的品種。讓我們總結(jié)一下我們?cè)谶@里學(xué)到的知識(shí):我們對(duì)數(shù)據(jù)集進(jìn)行了分析和預(yù)處理。機(jī)器學(xué)習(xí)算法需要單獨(dú)的訓(xùn)練集、測(cè)試集和驗(yàn)證集來(lái)進(jìn)行置信預(yù)測(cè)。我們從零開(kāi)始使用CNN,由于未能提取特征,所以表現(xiàn)不佳。然后我們使用了遷移學(xué)習(xí),準(zhǔn)確度大大提高最后,我們構(gòu)建了一個(gè)Flask web應(yīng)用程序來(lái)實(shí)現(xiàn)我們的項(xiàng)目封裝我們確實(shí)學(xué)到了很多東西,但你還可以嘗試很多其他的事情。你可以在heroku上部署web應(yīng)用程序,也可以嘗試使用不同的層(如Dropout層)來(lái)提高準(zhǔn)確性。參考鏈接:https://towardsdatascience.com/dont-know-the-breed-of-your-dog-ml-can-h(huán)elp-6558eb5f7f05
☆ END ☆

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
馬云重返一線督戰(zhàn),阿里重啟創(chuàng)始人模式
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車(chē)母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
最新活動(dòng)更多
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
即日-11.25立即下載>>> 費(fèi)斯托白皮書(shū)《柔性:汽車(chē)生產(chǎn)未來(lái)的關(guān)鍵》
-
11月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專(zhuān)題
- 1 特斯拉工人被故障機(jī)器人打成重傷,索賠3.6億
- 2 【行業(yè)深度研究】退居幕后四年后,張一鳴終于把算法公司變成AI公司?
- 3 AI 時(shí)代,阿里云想當(dāng)“安卓” ,那誰(shuí)是“蘋(píng)果”?
- 4 華為公布昇騰芯片三年計(jì)劃,自研HBM曝光
- 5 硬剛英偉達(dá)!華為發(fā)布全球最強(qiáng)算力超節(jié)點(diǎn)和集群
- 6 機(jī)器人9月大事件|3家國(guó)產(chǎn)機(jī)器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 7 谷歌“香蕉”爆火啟示:國(guó)產(chǎn)垂類(lèi)AI的危機(jī)還是轉(zhuǎn)機(jī)?
- 8 00后華裔女生靠?jī)刹緼I電影狂賺7.8億人民幣,AI正式進(jìn)軍好萊塢
- 9 美光:AI Capex瘋投不止,終于要拉起存儲(chǔ)超級(jí)周期了?
- 10 華為已殺入!AI領(lǐng)域最熱黃金賽道,大廠的數(shù)字人美女讓我一夜沒(méi)睡著覺(jué)