python+keras:識別狗的品種,準(zhǔn)確率超過80%!
model.fit(train_generator, epochs=5, validation_data=valid_generator, callbacks=[checkpointer])我們使用一個(gè)ModelCheckpoint的回調(diào)來保存驗(yàn)證分?jǐn)?shù)較高的模型。通過測試模型,我們得到的準(zhǔn)確率只有1%左右使用遷移學(xué)習(xí)現(xiàn)在,我們使用遷移學(xué)習(xí)來實(shí)現(xiàn)更高的準(zhǔn)確率。首先我們下載ResNet-50,可以通過運(yùn)行下面的代碼來提取相應(yīng)的訓(xùn)練集、測試和驗(yàn)證集:bottleneck_features = np.load('Data/bottleneck_features/DogResnet50Data.npz')train_Resnet50 = bottleneck_features['train']valid_Resnet50 = bottleneck_features['valid']test_Resnet50 = bottleneck_features['test']我們現(xiàn)在再次定義模型,并對提取的特征使用GlobalAveragePooling2D,它將一組特征平均為一個(gè)值。最后,如果驗(yàn)證損失在兩個(gè)連續(xù)的epoch內(nèi)沒有增加,我們使用額外的回調(diào)來降低學(xué)習(xí)率;如果驗(yàn)證損失在連續(xù)的5個(gè)epoch內(nèi)沒有增加,可以提前停止訓(xùn)練。Resnet50_model = tf.keras.models.Sequential()Resnet50_model.a(chǎn)dd(tf.keras.layers.GlobalAveragePooling2D(input_shape=train_Resnet50.shape[1:]))Resnet50_model.a(chǎn)dd(tf.keras.layers.Dense(1024, activation='relu'))Resnet50_model.a(chǎn)dd(tf.keras.layers.Dense(133, activation='softmax'))
Resnet50_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath='saved_models/weights_best_Resnet50.hdf5', verbose=1, save_best_only=True)early_stopping = tf.keras.callbacks.EarlyStopping(patience=5, monitor='val_loss')
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(patience=2, monitor='val_loss')Resnet50_model.fit(train_Resnet50, train_targets, validation_data=(valid_Resnet50, valid_targets), epochs=50, batch_size=20, callbacks=[checkpointer, early_stopping, reduce_lr], verbose=1)### 訓(xùn)練模型最后在測試集上的準(zhǔn)確率為82.65%,這與我們白手起家訓(xùn)練的模型相比,是一個(gè)巨大的進(jìn)步。構(gòu)建web應(yīng)用程序?qū)τ趙eb應(yīng)用程序,我們首先編寫了一個(gè)helper函數(shù),該函數(shù)接受圖像路徑并返回品種。label_to_cat字典將每個(gè)數(shù)字標(biāo)簽映射到它的狗品種。def predict_breed(img_path): '''預(yù)測給定圖像的品種''' # 提取特征 bottleneck_feature = extract_Resnet50(path_to_tensor(img_path)) bottleneck_feature = tf.keras.models.Sequential([ tf.keras.layers.GlobalAveragePooling2D(input_shape=bottleneck_feature.shape[1:]) ]).predict(bottleneck_feature).reshape(1, 1, 1, 2048) # 獲得預(yù)測向量 predicted_vector = Resnet50_model.predict(bottleneck_feature) # 模型預(yù)測的犬種 return label_to_cat[np.a(chǎn)rgmax(predicted_vector)]對于web應(yīng)用程序,我們將使用flaskweb框架來幫助我們用最少的代碼創(chuàng)建web應(yīng)用程序。我們定義一個(gè)接受圖像的路由,并用狗的品種呈現(xiàn)一個(gè)輸出模板@app.route('/upload', methods=['POST','GET'])def upload_file(): if request.method == 'GET': return render_template('index.html') else: file = request.files['image'] full_name = os.path.join(UPLOAD_FOLDER, file.filename) file.save(full_name) dog_breed = dog_breed_classifier(full_name) return render_template('predict.html', image_file_name = file.filename, label = dog_breed)predict.html是分別顯示圖像及其犬種的模板。結(jié)論祝賀你!你已經(jīng)成功地實(shí)現(xiàn)了一個(gè)狗品種分類器,并且可以準(zhǔn)確地分辨出狗的品種。讓我們總結(jié)一下我們在這里學(xué)到的知識:我們對數(shù)據(jù)集進(jìn)行了分析和預(yù)處理。機(jī)器學(xué)習(xí)算法需要單獨(dú)的訓(xùn)練集、測試集和驗(yàn)證集來進(jìn)行置信預(yù)測。我們從零開始使用CNN,由于未能提取特征,所以表現(xiàn)不佳。然后我們使用了遷移學(xué)習(xí),準(zhǔn)確度大大提高最后,我們構(gòu)建了一個(gè)Flask web應(yīng)用程序來實(shí)現(xiàn)我們的項(xiàng)目封裝我們確實(shí)學(xué)到了很多東西,但你還可以嘗試很多其他的事情。你可以在heroku上部署web應(yīng)用程序,也可以嘗試使用不同的層(如Dropout層)來提高準(zhǔn)確性。參考鏈接:https://towardsdatascience.com/dont-know-the-breed-of-your-dog-ml-can-h(huán)elp-6558eb5f7f05
☆ END ☆

發(fā)表評論
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個(gè)字
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國際物聯(lián)網(wǎng)展·深圳站
-
10月23日立即報(bào)名>> Works With 開發(fā)者大會(huì)深圳站
-
10月24日立即參評>> 【評選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【限時(shí)下載】ADI中國三十周年感恩回饋助力企業(yè)升級!
推薦專題
- 1 阿里首位程序員,“掃地僧”多隆已離職
- 2 先進(jìn)算力新選擇 | 2025華為算力場景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 3 宇樹機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 清華跑出具身智能獨(dú)角獸:給機(jī)器人安上眼睛和大腦,融資近20億
- 5 踢館大廠和微軟,剖析WPS靈犀的AI實(shí)用主義
- 6 特朗普要求英特爾首位華人 CEO 辭職
- 7 AI版“四萬億刺激”計(jì)劃來了
- 8 騰訊 Q2 財(cái)報(bào)亮眼:AI 已成第二增長曲線
- 9 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 10 騰訊米哈游押寶的中國AI應(yīng)用,正在海外悶聲發(fā)財(cái)